Laminar-Turbulent Patterning in Transitional Flows

نویسنده

  • Paul Manneville
چکیده

Wall-bounded flows experience a transition to turbulence characterized by the coexistence of laminar and turbulent domains in some range of Reynolds number R, the natural control parameter. This transitional regime takes place between an upper threshold Rt above which turbulence is uniform (featureless) and a lower threshold Rg below which any form of turbulence decays, possibly at the end of overlong chaotic transients. The most emblematic cases of flow along flat plates transiting to/from turbulence according to this scenario are reviewed. The coexistence is generally in the form of bands, alternatively laminar and turbulent, and oriented obliquely with respect to the general flow direction. The final decay of the bands at Rg points to the relevance of directed percolation and criticality in the sense of statistical-physics phase transitions. The nature of the transition at Rt where bands form is still somewhat mysterious and does not easily fit the scheme holding for pattern-forming instabilities at increasing control parameter on a laminar background. In contrast, the bands arise at Rt out of a uniform turbulent background at a decreasing control parameter. Ingredients of a possible theory of laminar-turbulent patterning are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model

Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...

متن کامل

On a transitional and turbulent natural convection in spherical shells

Laminar and turbulent natural convection inside concentric spherical shells with isothermal cold and hot boundaries is numerically investigated up to Rayleigh number values Ra 6 10 and Pr = 0.71. The study utilizes direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds averaged Navier– Stokes (RANS) approaches for investigation of the laminar, transitional and fully develop...

متن کامل

Parallel Simulation of High Reynolds Number Vascular Flows

The simulation of turbulent vascular flows presents significant numerical challenges. Because such flows are only weakly turbulent (i.e., transitional), they lack an inertial subrange that is amenable to subgrid-scale (SGS) modeling required for large-eddy or Reynolds-averaged Navier-Stokes simulations. The only reliable approach at present is to directly resolve all scales of motion. While the...

متن کامل

Parallel large-eddy simulations of turbulent flows with complex moving boundaries on fixed Cartesian grids

A parallel embedded boundary approach for large-eddy simulations of turbulent flows with complex geometries and dynamically moving boundaries on fixed orthogonal grids is presented. The underlying solver is based on a second-order fractional step method on a staggered grid. The boundary conditions on an arbitrary immersed interface are satisfied via second-order local reconstructions. The paral...

متن کامل

Numerical simulation of nanofluid flow over diamond-shaped elements in tandem in laminar and turbulent flow

In this paper, the Al2O3-water nanofluid flow in laminar and turbulent flows inside tubes fitted with diamond-shaped turbulators is numerically modeled. The nanofluid flow is modeled by employing a two-phase mixture method and applying the constant heat flux boundary condition at tube walls. In the results, the effects of different parameters such as the geometry of turbulators, volume fraction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017